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1. Introduction 
Segmentation is the fundamental process which partitions a data space into meaningful 
salient regions. Image segmentation essentially affects the overall performance of any 
automated image analysis system thus its quality is of the utmost importance. Image 
regions, homogeneous with respect to some usually textural or colour measure, which result 
from a segmentation algorithm are analysed in subsequent interpretation steps. Texture-
based image segmentation is area of intense research activity in the past thirty years and 
many algorithms were published in consequence of all this effort, starting from simple 
thresholding methods up to the most sophisticated random field type methods. 
Unsupervised methods which do not assume any prior scene knowledge which can be 
learned to help segmentation process are obviously more challenging than the supervised 
ones. 
Segmentation methods are usually categorized (Reed et al., 1993) as region-based, 
boundary-based, or as a hybrid of the two. Different published methods are difficult to 
compare because of lack of a comprehensive analysis together with accessible experimental 
data, however available results indicate that the ill-defined texture segmentation problem is 
still far from being satisfactorily solved. The clustering approach resulted in agglomerative 
and divisive algorithms which were modified for image segmentation as region-based 
merge and split algorithms. Spatial interaction models and especially Markov random field-
based models are increasingly popular for texture representation (Kashyap, 1986; Reed et 
al., 1993; Haindl, 1991), etc. Several researchers dealt with the difficult problem of 
unsupervised segmentation using these models see for example (Panjwani et al., 1995; 
Manjunath et al., 1991; Andrey et al., 1998; Haindl, 1999) or (Haindl et al., 2004, 2005, 2006a). 
In this chapter we assume constant illumination and viewing angles for all scene textures, or 
alternatively that the Lambert law holds for all scene surfaces. If this assumption cannot be 
assumed than all textures have to be treated either as Bidirectional Texture Functions (BTFs) 
or some illumination invariant features (Haindl et al., 2006b; Vacha et al., 2007) have too be 
used. 

2. Texture segmentation methods 
Segmentation methods are based on some pixel or region similarity measure in relation to 
their local neighbourhood. Boundary-based methods search for the most dissimilar pixels 
which represent discontinuities in the image, while region based methods on the contrary 
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search for the most similar areas. These similarity measures in texture segmentation 
methods use some textural spatial-spectral-temporal features such as Markov random field 
statistics (MRF) (Haindl et al., 2004, 2005, 2006a), cooccurrence matrix based features, Gabor 
features, local binary pattern (LBP) (Ojala et al., 1999), autocorrelation features and many 
others. Segmentation methods can be categorized using various criteria, e.g. region / 
boundary based, MAP / clustering methods, graph theoretic methods, etc. 

2.1 Region growing 
The basic approach of a region growing algorithm (Pal et al., 1993; Belongie et al., 1998; 
Deng et al., 2001, 2004; Scarpa et al., 2006, 2007) is to start from a seed regions (mostly one or 
few pixels) that are assumed to be inside the object to be segmented. The neighbouring 
pixels to every seed region are evaluated to decide if they should be considered part of the 
object or not. If they are recognized as similar, they are added to the region and the process 
continues as long as any undecided pixels remain. Region growing algorithms vary 
depending on the similarity criteria, seed region selection, the type connectivity used to 
determine neighbours, and the strategy used to visit neighbouring pixels. 
The JSEG method (Deng et al., 2001) consists of two independent steps: colour quantization 
and region growing spatial segmentation on multiscale thematic maps from the first step. 
The Blobworld scheme aims to transform images into a small set of regions which are 
coherent in colour and texture (Belongie et al., 1998). This is achieved by clustering pixels in 
a joint colour-texture-position eight-dimensional feature space using the EM algorithm. The 
feature vector is represented by a Gaussian mixture model. 

2.2 Split and merge 
Split and merge techniques (Pal et al., 1993) start with recursive splitting image into smaller 
regions until they do not satisfy some homogeneity criterion. The second merging step 
merges adjacent regions with similar attributes. 

2.3 Watershed 
Watershed segmentation (Shafarenko et al., 1997) classifies pixels into regions using 
gradient descent on image features and analysis of weak points along region boundaries. 
The image feature space is treated, using a suitable mapping, as a topological surface where 
higher values indicate the presence of boundaries in the original image data. It uses analogy 
with water gradually filling low lying landscape basins. The size of the basins grow with 
increasing amounts of water until they spill into one another. Small basins (regions) 
gradually merge together into larger basins. Regions are formed by using local geometric 
structure to associate the image domain features with local extremes measurement. 
Watershed techniques produce a hierarchy of segmentations, thus the resulting 
segmentation has to be selected using either some prior knowledge or manually. These 
methods are well suited for different measurements fusion and they are less sensitive to 
user defined thresholds. 

2.4 Level set segmentation 
The paradigm of the level set (Brox et al., 2006) is that it is a numerical method for tracking 
the evolution of contours and surfaces. Instead of manipulating the contour directly, the 
contour is embedded as the zero level set of a higher dimensional function called the level-
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set function. The level-set function is evolved under the control of a differential equation 
using some image-based features. At any time, the evolving contour can be obtained by 
extracting the zero level-set from the output. Level sets allow to model arbitrarily complex 
shapes and topological changes such as merging and splitting are handled implicitly. 

2.5 Mean shift segmentation 
Edison (Christoudias et al., 2002) is a mean shift based image segmentation with embedded 
edge information. Its first filtering step uses the mean shift (Comaniciu et al., 2002) 
segmenter in the combined colour L*u*v* and coordinate feature space. The mean shift 
weights are derived from the edge confidence measure. The second fusion step recursively 
fuses the basins of attraction of the modes. The method requires six segmentation 
parameters to be tuned. 

2.6 Graph-theoretic segmentation 
These methods (Felzenszwalb et al., 1998; Shi et al., 2000; Boykov et al., 2003; Galun et al., 
2003; Barbu et al., 2004; Estrada et al., 2005) use graph representation for image pixels or 
regions where usually small neighbourhood elements are mutually connected with 
weighted graph edges. These weights indicate pairwise elements similarities. The 
segmentation is based on finding groups of nodes that are strongly connected to each other, 
but weakly with the remaining nodes in the graph. 

3. GMRF-GM segmenter 
The adequate representation of general static Lambertian multispectral textures requires 
three dimensional models. Although full 3D models allows unrestricted spatial-spectral 
correlation description its main drawback is large amount of parameters to be estimated and 
in the case of Markov random field based models (MRF) also the necessity to estimate all 
these parameters simultaneously. Alternatively, it is possible to factorize the 3D static 
texture space into several (equal to the number d of spectral bands) 2D subspaces. A 
combination of several simpler 2D data models with less parameters per model allows more 
compact texture representation and faster estimation algorithms. Natural measured texture 
data space can be decorrelated only approximately thus the independent spectral 
component representation suffers with some loss of image information. However, because 
the segmentation is less demanding application than the texture synthesis, it is sufficient if 
such a representation maintains discriminative power of the full model even if its visual 
modeling strength is slightly compromised. The GMRF-GM segmenter (Haindl et al., 2004) 
uses such 2D generative Gaussian Markov representation. 

3.1 Spectral factorization 
Spectral factorization using the Karhunen-Loeve expansion transforms the original centered 
data space θ defined on the rectangular M×N finite lattice I into a new data space with K-L 
coordinate axes . This new basis vectors are the eigenvectors of the second-order statistical 
moments matrix 

 (1)
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where the multiindex r has two components r = [r1, r2], the first component is row and the 
second one column index, respectively. The projection of the centered random vector  
onto the K-L coordinate system uses the transformation matrix  which 
has single rows uj that are eigenvectors of the matrix Φ. 

 (2)

Components of the transformed vector  (2) are mutually uncorrelated. If we assume 
further on Gaussian vectors  then they are also independent, i.e., 

 
and single monospectral random fields can be modeled independently. 

3.2 GMRF texture model 
We assume that single monospectral texture factors  can be modeled using a 
Gaussian Markov random field model (GMRF). This model is obtained if the local 
conditional density of the MRF model is Gaussian: 

 
where the mean value is 

 
(3)

and , as ∀s ∈ Ir are unknown parameters. 
The 2D GMRF model can be expressed as a stationary non-causal correlated noise driven 2D 
autoregressive process: 

 
(4)

where the noise er is random variable with zero mean E{er} = 0 . The er noise variables are 
mutually correlated 

 

(5)

Correlation functions have the symmetry property E{erer+s} = E{erer-s} hence the 
neighbourhood support set Ir and its associated coefficients have to be symmetric, i.e., s ∈ Ir 

⇒ -s ∈Ir and as = a-s . 
The selection of an appropriate GMRF model support is important to obtain good results in 
modeling of a given random field. If the contextual neighbourhood is too small it can not 
capture all details of the random field. Inclusion of the unnecessary neighbours on the other 
hand add to the computational burden and can potentially degrade the performance of the 
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model as an additional source of noise. We use hierarchical neighbourhood system Ir, e.g., 
the first-order neighbourhood is Ir = {-(0, 1),+(0, 1),-(1, 0),+(1, 0)}, etc. An optimal 
neighbourhood is detected using the correlation method (Haindl et al., 1997) favoring 
neighbours locations corresponding to large correlations over those with small correlations. 
Parameter estimation of a MRF model is complicated by the difficulty associated with 
computing the normalization constant. Fortunately the GMRF model is an exception where the 
normalization constant is easy obtainable however either Bayesian or ML estimate requires 
iterative minimization of a nonlinear function. Therefore we use the pseudo-likelihood 
estimator which is computationally simple although not efficient. The pseudo-likelihood 
estimate for as parameters evaluated for a sublattice Jr ⊂ I and Jr = {s : ⎢r1 - s1⎢≤ m ∧ ⎢r2 - s2⎢ ≤ n} 
centered on the r index. The pseudo-likelihood estimate for as parameters has the form 

 
(6)

where . 

3.3 Mixture model based segmentation 
Multi-spectral texture segmentation is done by clustering in the GMRF parameter space 
Θ∈Rn defined on the lattice I where 

 (7)

γr,i is the parameter vector (6) computed for the i-th transformed spectral band for the lattice 
location r and ,i is the average local spectral value. We assume that this parametric space 
can be represented using the Gaussian mixture model with diagonal covariance matrices. 
Hence the GMRF parametric space is first decorrelated using the Karhunen-Loeve 
transformation (analogously to (1)-(2)). The Gaussian mixture model for GMRF parametric 
representation is as follows: 

 
(8)

 
(9)

The mixture equations (8),(9) are solved using the modified EM algorithm. The algorithm is 
initialized using νi, Σi statistics estimated from the corresponding rectangular subimages 
obtained by regular division of the input texture mosaic. An alternative initialization can be 
random choice of these statistics. For each possible couple of rectangles the Kullback Leibler 
divergence 

 
(10)
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is evaluated and the most similar rectangles, i.e., 

 
are merged together in each step. This initialization results in Kini subimages and 
recomputed statistics νi, Σi. Kini > K where K is the optimal number of textured segments to 
be found by the algorithm. After initialization two steps of the EM algorithm are repeating: 

 

 

 

 

(11)

The components with smaller weights pj <  than a given threshold are eliminated. For 
every pair of components we estimate their Kullback Leibler divergence (10). From the most 
similar couple, the component with the weight smaller than the threshold is merged to its 
stronger partner and all statistics are actualized using the EM algorithm. The algorithm 
stops when either the likelihood function has negligible increase ( – -1 < 0.05) or the 
maximum iteration number threshold is reached. 
The parametric vectors representing texture mosaic pixels are assigned to the clusters 
according to the highest component probabilities, i.e., r is assigned to the cluster ωj if 

 
(12)

 
The area of single cluster blobs is evaluated in the post-processing thematic map filtration 
step. Thematic map blobs with area smaller than a given threshold are attached to its 
neighbour with the highest similarity value. If there is no similar neighbour the blob is 
eliminated. After all blobs are processed remaining blobs are expanded. 

4. AR3D-GM segmenter 
If we do not like to lose spectral information due to the spectral decorrelation step, we have 
to use three dimensional models for adequate representation. One of few 3D models which 
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does not require any approximation and can be treated analytically is the 3D simultaneous 
causal autoregressive random field model (CAR) used in the AR3D-GM segmenter (Haindl 
et al., 2006a). 
We assume that single multispectral textures can be locally modeled using the CAR model. 
This model can be expressed as a stationary causal uncorrelated noise driven 3D 
autoregressive process (Haindl et al., 1992): 

 (13)

where 

 
is the d × dη parameter matrix, d is the number of spectral bands,  is a causal 

neighbourhood index set with η = card( ) and er is a white Gaussian noise vector with zero 
mean and a constant but unknown covariance, Xr is a corresponding vector of the contextual 
neighbours r-s and r, r - 1, . . . is a chosen direction of movement on the image index lattice 
I. The selection of an appropriate CAR model support ( ) is important to obtain good 
texture representation but less important for segmentation. The optimal neighbourhood as 
well as the Bayesian parameters estimation of a CAR model can be found analytically under 
few additional and acceptable assumptions using the Bayesian approach (Haindl et al., 
1992). The recursive Bayesian parameter estimation of the CAR model is (Haindl et al., 
1992): 

 
(14)

where  Local texture for each pixel is represented by four 
parametric vectors. Each vector contains local estimations of the CAR model parameters. 
These models have identical contextual neighbourhood  but they differ in their major 
movement direction (top-down, bottom-up, rightward, leftward), i.e., 

 (15)

The parametric space  is subsequently smooth out, rearranged into a vector and its 
dimensionality is reduced using the Karhunen-Loeve feature extraction ( ). Finally we add 
the average local spectral values   to the resulting feature vector (Θr). 

4.1 AR2D-GM segmenter 
The AR2D-GM segmenter (Haindl et al., 2005) uses the 2D simultaneous causal 
autoregressive random field model and thus it requires the spectral decorrelation described 
in section 3.1. If we stack single decorrelated mono spectral pixel components into d ×1 
vectors Yr, the model can be formalized using the same equations as the AR3D model, i.e. 
(13)-(15). The AR2D models differ in having diagonal parameter matrices As and a diagonal 
white noise covariance matrix. 
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4.2 Mixture based segmentation 
Multi-spectral texture segmentation is done by clustering in the CAR parameter space Θ 
defined on the lattice I where 

 
is the modified parameter vector (15) computed for the lattice location r. We assume that 
this parametric space can be represented using the Gaussian mixture model (GM) with 
diagonal covariance matrices due to the previous CAR parametric space decorrelation. The 
Gaussian mixture model for CAR parametric representation is again (8),(9) and can be 
solved similarly as (10)-(12). 

5. Evaluation methodology 
Unsupervised or supervised texture segmentation is the prerequisite for successful content-
based image retrieval, scene analysis, automatic acquisition of virtual models, quality 
control, security, medical applications and many others. Although more than 1000 different 
methods were already published (Zhang, 1997), this problem is still far from being solved. 
This is among others due to missing reliable performance comparison between different 
techniques because very limited effort was spent to develop suitable quantitative measures 
of segmentation quality that can be used to evaluate and compare segmentation algorithms. 
Rather than advancing the most promising image segmentation approaches novel 
algorithms are often satisfied just being sufficiently different from the previously published 
ones and tested only on a few carefully selected positive examples. The optimal alternative 
to check several variants of a developed method and to carefully compare results with state-
of-theart in this area is practically impossible because most methods are too complicated 
and insufficiently described to be implemented in the acceptable time. Because there is no 
available benchmark fully supporting segmentation method development, we implemented 
a solution in the form of web based data generator and benchmark software. Proper testing 
and robust learning of performance characteristics require large test sets and objective 
ground truth which is unfeasible for natural images. Thus, inevitably all such image sets 
such as the Berkeley benchmark (Martin et al., 2001) share the same drawbacks - subjectively 
generated ground truth regions and limited extent which is very difficult and expensive to 
enlarge. These problems motivated our preference for random mosaics with randomly filled 
textures even if they only approximate natural image scenes. The profitable feature of this 
compromise is the unlimited number of different test images with corresponding objective 
and free ground truth map available for each of them. 
The segmentation results can be judged (Zhang, 1997) either by using manually segmented 
images as reference (Lee et al., 1990), or visually by comparing to the original images (Pal et 
al., 1993), or just by applying quality measures corresponding to human intuition (Sahoo et 
al., 1988; Lee et al., 1990; Pal et al., 1993). However it is difficult to avoid subjective ranking 
conclusions by using either of above approaches on limited test databases. 
A prior work on the segmentation benchmark is the Berkeley benchmark presented by 
Martin et al. (Martin et al., 2001). This benchmark contains more than 1000 various natural 
images (300 in its public version) from the Corel database, each of which is manually 
processed by a group of people to get the ground-truth segmentation in the form of 
partitioning of the image into a set of disjoint segments. Without any special guidance, such 



Unsupervised Texture Segmentation 

 

235 

manual segmentations reflect the subjective human perception and therefore, different 
people usually construct different ground truths on the same image. The Berkeley benchmark 
suffers from several drawbacks. Apart from subjective ground truth, also its performance 
criteria a global consistency error (GCE) and a local consistency error (LCE) tolerate 
unreasonable refinement of the ground truth. Over-segmented machine segmentations have 
always zero consistency error, i.e., they wrongly suggest an ideal segmentation. The 
benchmark comparison is based on region borders hence different border localization from the 
human based drawing can handicap otherwise correct scene segmentation. 
Another segmentation benchmark Minerva (Sharma et al., 2001) contains 448 colour and 
grey scale images of natural scenes which are segmented using four different segmenters, 
segmented regions are manually labelled and different textural features can be learned from 
these regions and subsequently used by the kNN supervised classifier. This approach 
suffers from erroneous ground truth resulting from an imperfect segmenter, manual 
labelling and inadequate textural feature learning from small regions. 
Outex Texture Database (Ojala et al., 2002) provides a public repository for three types of 
empirical texture evaluation test suites. It contains 14 classification test suites, while one 
unsupervised segmentation test set is formed by 100 texture mosaics all using the same 
regular ground truth template and finally one texture retrieval test set. The test suites are 
publicly available on the website (http://www.outex.oulu.fi), which allows searching, 
browsing and downloading of the test image databases. Outex currently provides limited 
test repository but does not allow results evaluation or algorithms ranking. 
A psycho-visual evaluation of segmentation algorithms using human observers was 
proposed in (Shaffrey et al., 2002). The test was designed to visually compare two 
segmentations in each step and to answer if any consensus of the best segmentation exists. 
While such human judgement certainly allows meaningful evaluation, this approach is too 
demanding to be applicable in image segmentation research. 

5.1 Prague texture segmentation benchmark 
The Prague texture segmentation data-generator and benchmark Fig.1 is web based service 
(http://mosaic.utia.cas.cz) developed as a part of EU NoE no. 507752 MUSCLE project. The 
goal of the benchmark is to produce score, performance and quality measures for an 
algorithm’s performance for two main reasons: So that different algorithms can be 
compared to each other, and so that progress toward human-level segmentation 
performance can be tracked and measured over time. A good experimental evaluation 
should allow comparison of the current algorithm to several leading alternative algorithms, 
using as many test images as possible and employing several evaluation measures for 
comparison (in the absence of one clearly optimal measure). Our benchmark possesses all 
these features. 
Single textures as well as the mosaics generation approach were chosen on purpose to 
produce unusually difficult tests to allow an improvement space for future better 
segmentation algorithms. 
The benchmark operates either in full mode for registered users (unrestricted mode - U) or in a 
restricted mode. The major differences between both working modes are that the restricted 
operational mode does not permanently store visitor’s data (results, algorithm details, etc.) 
into its online database and does not allow custom mosaics creation. To be able to use full-
unrestricted benchmark functionalities the user is required to be registered (registration page). 
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Fig. 1. Benchmark interfaces, the comparison table (top) and detailed method’s evaluation 
on benchmark test mosaics. 
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The benchmark allows: 
• To obtain customized experimental texture mosaics and their corresponding ground 

truth (U), 
• To obtain the benchmark texture mosaic sets with their corresponding ground truth, 
• To evaluate visitor’s working segmentation results and compare them (Fig.1- top) with 

state-of-the-art algorithms, 
• To update the benchmark database (U) with an algorithm (reference, abstract, 

benchmark results) and use it for subsequent other algorithms benchmarking, 
• To grade noise endurance of an algorithm, 
• To check single mosaics evaluation details (criteria values and resulted thematic maps), 
• To rank segmentation algorithms according to the most common benchmark criteria, 
• To obtain LaTeX or MATLAB coded resulting criteria tables (U). 
 

 
Fig. 2. Voronoi (left) and modified (right) mosaic polygons. 

5.2 Benchmark generation 
Benchmark datasets are computer generated 512 ×512 random mosaics filled with randomly 
selected textures. The random mosaics are generated by using the Voronoi polygon random 
generator (Shewchuk, 1996). It creates firstly a Delaunay triangulation, secondly determines 
the circumcircle centres of its triangles, and thirdly connects these points according to the 
neighbourhood relations between the triangles. Resulting Voronoi polygons can further be 
modified, (see Fig.2), if required by inserting additional border points into each polygon 
line. We exploit the fact that segmenting smaller and irregular objects is more difficult than 
segmenting bigger and regular objects such as squares or circles. 

5.3 Performance criteria 
The submitted benchmark results are evaluated and stored (U) in the server database and 
used for the algorithm ranking according to a chosen criterion. We have implemented the 
twenty seven most frequented evaluation criteria categorized into four groups: region-based 
(5+5), pixel-wise (12), consistency measures (2) and clustering comparison criteria (3). The 
performance criteria mutually compare ground truth image regions with the corresponding 
machine segmented regions. Symbols  further denote required increase or decrease 
of the corresponding criterion. The basic region-based criteria available are correct, over-
segmentation, undersegmentation, missed and noise. All these criteria are available either 
for a single threshold parameter setting or as the performance curves (e.g. Fig.3) and their 
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integrals. Our pixel-wise criteria group contains the most frequented classification criteria 
such as the omission and commission errors, class accuracy, recall, precision, mapping 
score, etc. The consistency criteria group incorporates the global and local consistency 
errors. Finally, the last criterion set contains three clustering comparison measures. By 
clicking on a required criterion the evaluation table is reordered, according to this chosen 
criterion. 

 
Fig. 3. The correct segmentation sensitivity (performance) curve and its integral for the 
AR3D-GM segmenter. 

6. Results 
Our algorithms were tested on natural colour textures mosaics from the Prague Texture 
Segmentation Data-Generator and Benchmark (Mikeš et al., 2006; Haindl et al., 2008). The 
benchmark test mosaics layouts and each cell texture membership are randomly generated 
and filled with colour textures from the large (more than 1000 high resolution colour 
textures) Prague colour texture database. The benchmark ranks segmentation algorithms 
according to a chosen criterion. 
Tab.1 compares the overall benchmark performance of our algorithms (segmentation time 7 
min/img on the Athlon 2GHz processor) with the Blobworld (Carson et al., 1999) (30 
min/img), JSEG (Deng et al., 2001) (30 s/img), Edison (Christoudias et al., 2002) (10 s/img), 
respectively. These results demonstrate very good pixel-wise, correct region segmentation 
and low undersegmentation properties of both our methods while the oversegmentation 
results are only average. For all the pixel-wise criteria or the consistency measures our 
methods are either the best ones or the next best with marginal difference from the best one. 
Fig.4 shows four selected 512×512 experimental benchmark mosaics created from five to 
eleven natural colour textures. The last four columns demonstrate comparative results from 
the four alternative algorithms. Hard natural textures were chosen rather than synthesized 
(for example using Markov random field models) ones because they are expected to be more 
difficult for the underlying segmentation model. The third column demonstrates robust  
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Table 1. Benchmark criteria (×100): CS = correct segmentation; OS = oversegmentation; US = 
under-segmentation; ME = missed error; NE = noise error; O = omission error; C = 
commission error; CA = class accuracy; CO = recall – correct assignment; CC = precision - 
object accuracy; I. = type I error; II. = type II error; EA = mean class accuracy estimate; MS = 
mapping score; RM = root mean square proportion estimation error; CI = comparison index; 
GCE = Global Consistency Error; LCE = Local Consistency Error; 

behaviour of our GMRF-GM algorithm but also infrequent algorithm failures producing the 
oversegmented thematic map for some textures. Such failures can be reduced by a more 
elaborate postprocessing step. The JSEG (Deng et al., 2001), Blobworld (Carson et al., 1999) 
and Edison (Christoudias et al., 2002) algorithms on these data performed steadily worse as 
can be seen in the last two columns of Fig.4, some areas are undersegmented while other 
parts of the mosaics are oversegmented. The GMRF-GM (Haindl et al., 2004) method is 
slower and its results are surprisingly also slightly worse than the AR3D-GM results. 
Resulting segmentation results are promising however comparison with all state-of-the-art 
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algorithms is difficult because of lack of sound experimental evaluation results in this area. 
Our results can be further improved by an appropriate postprocessing. 
 

 
               a                                b                               c                             d                              e 

Fig. 4. Selected benchmark texture mosaics (a), AR3D-GM (b), GMRF-GM (c), Blobworld (d), 
and Edison segmentation results (e), respectively. 

6.1 Mammography 
Breast cancer is the leading cause of death (Tweed et al., 2002; Qi et al., 2003) among all 
cancers for middle-aged women in most developed countries. Current effort is focused on 
cancer prevention and early detection which can significantly reduce the mortality rate. X-
ray screening mammography is the most frequented method for breast cancer early 
detection although not without problems (Qi et al., 2003) such as rather large minimum 
detectable tumor size, higher mammogram sensitivity for older women or radiation 
exposition. Automatic mammogram analysis is still difficult task due to wide variation of 
breast anatomy, nevertheless a computer-aided diagnosis system can successfully assist a 
radiologist, and can be used as a second opinion. The first step in a such system is detection 
of suspicious potentially cancerous regions of interest . Several approaches to detect these 
regions of interest (ROI) were published (Tweed et al., 2002), mostly based on supervised 
learning. We propose an unsupervised segmentation method for fast automatic 
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mammogram segmentation into the regions of interest (ROI) using a statistical random field 
based texture representation. 
The presented method detects the fibroglandular tissue regions from either craniocaudal 
(CC) or mediolateral oblique (MLO) views and thus can help focus a radiologist to this most 
important breast region. 
Breast Detector The method starts with automatic breast area detection because it can be 
cheaply computed and simplifies the subsequent fibroglandular tissue region detection. 
This is performed using simple histogram thresholding with an automatically selected 
threshold. In this step the method also recognizes several label areas on a mammogram. We 
compute their areas and all but the largest one are discarded and merged with the 
 

 
Fig. 5. Normal right breast mammogram (patient age 58, but with a cancerous lesion in the 
left breast), the detected breast area, segmentation result and detected regions of interest, 
respectively. 
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background. In this stage the algorithm also decides the breast orientation on the 
mammogram (left or right). Fig. 5 - breast mask show resulting detected breast area (in 
inverted grey levels). The following detection of regions of interest is performed only in the 
breast region ignoring the background area set in the mask template. 
Breast Tissue Texture Model Our method segments pseudo-colour multiresolution 
mammograms each created from the original greyscale mammogram and its two nonlinear 
gamma transformations. We assume to down-sample input image Y into M = 3 different 
resolutions  with sampling factors ιm  m = 1, . . . ,M identical for both directions 
and Y(1) = Y. Local texture for each pixel  is represented using the 3D CAR model 
parameter space . The concept of decision fusion (Kittler et al., 1997) for high-
performance pattern recognition is well known and widely accepted in the area of 
supervised classification where (often very diverse) classification technologies, each 
providing complementary sources of information about class membership, can be integrated 
to provide more accurate, robust and reliable classification decisions than the single 
 

 
Fig. 6. Cancerous mammograms (patients age 58 (top) and 80 (bottom)), radiologist 
associated ground truth and detected regions of interest using the multiple segmenter 
approach, respectively. 
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classifier applications. The proposed method circumvents the problem of multiple 
unsupervised segmenters combination (Haindl et al., 2007) by fusing multiple-processed 
measurements into a single segmenter feature vector. 
Experimental Results The algorithm was tested on mammograms from the Digital Database 
for Screening Mammography (DDSM) from the University of South Florida (Heath et al., 
2000). This database contains 2620 four view (left and right craniocaudal (CC) and 
mediolateral oblique (MLO)) mammograms in different resolutions. Single mammograms 
cases are divided into normal, benign, benign without callback volumes and cancer. All our 
experiments are done with three resolutions (M=3) using sampling factors 

 and the causal neighbourhood with fourteen neighbours (η= 14). Fig. 
6-top show left MLO mammogram of a patient age 58 with detected malignant asymmetric 
lesion and the right CC mammogram (Fig. 6-bottom) of a patient age 80 with detected 
irregular, spiculated malignant lesion type. The segmenter correctly found the region of 
interest with the cancer lesion on both mammograms. The detected region of interest results 
Figs. 5-6 demonstrate very good region segmentation and low oversegmentation properties 
of our method. 

6.2 Remote sensing 
Segmentation of remote sensing imagery for various applications (e.g. agriculture, 
geological survey, military and security, weather forecast, terrain classification, astronomy, 
the detection of changes and anomalies, etc.) is challenging task due to huge amounts of 
data measured by satellite or airborne sensors. Large remote sensing images suffer not only 
with geometric and radiometric distortions problems but also with various challenges due 
to the high heterogeneity both within and across classes. The within class heterogeneity is 
due to the difference of acquisition process, orientation, and intrinsic appearance (Fauqueur 
et al., 2005). 
We modified our unsupervised segmentation methods (sections 3,4) to be able to handle 
large aerial images (up to 8000 × 8000) distributed by the British National Space Centre 
(BNSC) as a CDROM called ”Window On The UK”. These aerial images (Fig.7) cover both 
urban and rural areas of the United Kingdom. The parametric space Θ (7) build over large 
images from this set requires efficient memory handling and distance based region class 
merging to avoid expensive memory swapping during the segmentation. Segmentation 
results illustrated on Fig.7-bottom do not use any prior information except the minimal 
region area. This parameter can be easily determined from the image resolution and the 
intended thematic map application. 

7. Conclusions 
We discussed three efficient and robust methods for unsupervised texture segmentation 
with unknown number of classes based on the underlying Markovian and GM texture 
models and their modifications for medical mammographics and remote sensing 
applications, respectively. Although these algorithm use the random field type models they 
are fast because they use efficient recursive or pseudo-likelihood parameter estimation of 
the underlying texture models and therefore they are much faster than the usual Markov 
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Fig. 7. Aerial Lmw 4800 × 4800 image (top left), its detail (top right), the corresponding 
unsupervised segmentation (bottom left) and parrac 8000 × 8000 image segmentation result, 
respectively. 

chain Monte Carlo estimation approach. Usual handicap of segmentation methods is their 
lot of application dependent parameters to be experimentally estimated. Our methods 
require only a contextual neighbourhood selection and two additional thresholds. Their 
performance is demonstrated on the extensive benchmark tests on natural texture mosaics. 
They perform favorably compared with four alternative segmentation algorithms. The AR-
GM methods are faster than the GMRF-GM method. These segmenters allow to build 
efficient methods for completely automatic unsupervised detection of mammogram 
fibroglandular tissue regions of interest which can assist a radiologist, and can be used as a 
second opinion. Alternatively our segmenters can be used to detect meaningful areas in 
large remote sensing images and in various other image segmentation applications. 
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